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An Attempt to Model Distributions of Machined Component
Dimensions in Production

Can COGUN*, Biinyamin KILINC
Mechanical Engineering Department, Gazi University, Maltepe, 06570 Ankara, Turkey

In this study, normal, log-normal, triangular, uniform, Weibull, Erlang and unit beta
probability density functions are tried to represent the behaviour of frequency distributions of
workpiece dimensions collected from various manufacturing firms. Among the distribution
functions, the unit beta distribution function is found to be the best fit using the chi-square test
of fit. An attempt is made for the adoption of the unit beta model to x-bar charts of quality
control in manufacturing. In this direction, upper and lower control limits (UCL and LCL) of
x-bar control charts of dimension measurements are estimated for the beta model, and the
observed differences between the beta and normal model control limits are discussed for the

measurement sets.
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1. Introduction

Workpart dimensions are random variables
and statistical frequency distributions of their
dimensions vary from process to process. Quality
control is a professional field that deals with these
variations in an effort to provide quality produc-
tion at minimum cost. The point of quality con-
trol is to study ongoing processes, which involves
analysis of the characteristics of the population
output by inference of the sample output. The
detected trends result from assignable causes as
opposed to random causes which are inherent in
the manufacturing processes. The main tools used
for identifying assignable causes of variation are
control charts, of which the x-bar chart and the p~
chart are prominent.

The control charts or quality control technique
always assumes normal dispersion, or distribution
of dimensions. Some of the studies conducted in
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the field have shown that the normal distribution,
which assumes the symmetry of distributions, may
not properly model the dimension and tolerance
distributions due to the existence of skewness in
their shape. For the dimension and tolerance
distributions limited number of researchers
proposed different models than normal, like right~
skewed normal (Shainin, 1949), semi circle
(Gibson, 1951), uniform (Crafts, 1952 ; Fortini,
1956), triangular (Doyle, 1951 ; Mansoor, 1960 ;
1964), moving normal (Gladman, 1959), beta
(He, 1991) and sinus (Mansoor, 1960 ;1964 ;
Burr, 1958). In all of these works, very few
distribution functions, mostly only one, are tested
with a rather limited number of dimension or
tolerance frequency distributions, i.e. samples.
Some others have also raised the need for a
different model than the normal to reflect the
behaviour of dimension and tolerance
distributions (Bjorke, 1978 ; Bennet, 1964 ;
Gladman, 1980 ; Zhang and Hugq, 1992 ; Fortini,'
1967 ; Nelson, 1984). Although, some attempts
have been made to represent the dimension
distributions by another model than the normal,
no attempt has been made to reconstruct x-bar
control charts, according to the new proposed
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models. Some published works (Bai and Chois,
1995 ; Balakrishnan and Kocherlakota, 1986 ;
Borror et al., 1999 ; Chan et al., 1988 ; Choobineh
and Ballard, 1987 ;Haridy and El-shabrawy,
1996 ; Lashkari and Rahim, 1982 ; Nelson, 1979 ;
Padget and Spurrier, 1990 ; Shilling and Nelson,
1976 ; Shore, 1998) provided
motivation for normal-based control charts that

have some
deal with data that is not symmetric. The authors
of these works believe that it is not desirable in
practice to have control limit factors for specific
distributions since standard control charts based
on the normal model are sufficiently robust to
non-normality or can be made so with some
modifications.

Formerly, an investigation was conducted by
the authors of this work (Kiling, 1999) to pro-
pose some other statistical probability density
functions, or models than the normal, which
would reflect the statistical behaviour of the fre-
quency distribution of dimensions better than the
normal model. The beta model, or distribution
function is found to be the best model among the
proposed seven distribution functions to reflect
the shape behaviour of dimension frequency. The
changes that should be made in the construction
of x-bar charts in the use of the beta model are
proposed.

2. Research model

2.1 Statistical
distributions

modelling of dimension

2.1.1 Data sets used in the study

The data sets (set of dimensions) are collected
from parts, which are produced by well-known
machine component producers in Turkey. Special
attention is paid to choose functionally different
parts with different sizes, shapes, tolerances and
manufacturing processes to eliminate concerns
that could be results due to
functionally similar workparts produced by simi-

raised from

lar manufacturing techniques and dimensions.
Although, a number of sets of
dimensional measurements, ie.

large
data sets are
collected from various workparts, more than 100

sets of data, a limited number of them is presented
in this paper. The information on the data sets
used in the study is given in Table 1. The first 5
characters of the code of the data set is for the
short description of manufacturing process, part
name and dimension information. The letters af-
ter the dot (.) in the code, namely, HMA, ORS,
TS, ASE, MKE, HE and MAN, are the
abbreviations for HEMA Gear Company (gear
manufacturer), ORS Bearing Company (bearing
manufacturer), Konya Trigger and Valve Com-
pany (valve manufacturer), ASELSAN (Military
Electronics Industries), MKEK Machinery and
Chemicals Industry and data sets taken from
published works of He (1991) and Mansoor
(1964), respectively. The data sets used in other
published works for reviewing the probability
density functions are not included in this study
due to lack of information about the dimensions
and parts.

Micrometers and dial gages with different ac-
curacies (Table 1) were
measurements. The measurements were performed

used in the
by the quality control personnel of the companies.

2.1.2 Distribution functions used in this study

In this study, normal, log-normal, triangular,
uniform, Weibull, Erlang and beta probability
density functions are tried for the fit of behaviour
of frequency distributions of part dimensions
collected from various manufacturing companies.
Weibull, Erlang, beta and log-normal
distributions could be symmetric or non-symmet-
ric (right- or left-skewed) in shape depending on
the values of model parameters. The distribution
functions, estimation of model parameters and
shape variations of the models could be found in
statistics books (Bain, 1978 ; Bury, 1975). The
shapes of distribution functions of these models
are given in Fig. 1. The use of the beta
distribution function requires long computations
involving its four model parameters. A useful and
practical form of the beta distribution which
requires less and simple computations is the unit
beta distribution, and is used in this study. Brief
information about the unit beta model is given in
Appendix.
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Table 1 Summary of the information on the measurement sets (Data Sets)

Nominal Size- Number| ‘
Code of the Part Definition Production Size Limits Sample Nu:}ber of Data iMcasuremenl ::::rl:f
Data Set Method USL/LSL Size Samples inthe @ Device (mm] Y
[mm or inch{+)] Set
TAMIF.HMA | 475 Massey Ferguson Engine grinding 53,955/53.995 5 9 45 Micrometer | 0.001
gearbox outlet flange diameter
TAM2F.HMA | Gearbox outlet flange length " 28,53/28,63 5 9 45 " 0.01
FRTSD.HMA | Rear axis gear tooth thickness milling 6,82/6,86 3 25 123 " 0.01
TOISD.HMA | Flatness of Maltese cross turning 0.07 3 24 120 Dial Gage 0.0l
TOKMC.HMA | FIAT Engine rear axis outlet dia. " 3725/31.45 5 15 75 Micrometer 0.01
TAPDK.HMA | Gearbox rear axis oil sealent dia. grinding 39,662/39,713 5 10 30 " 0.00!
TARID.ORS | Roller bearing{6000 series) " 25,994/25,999 5 20 100 " 0.001
outer ring diameter
TAR3D.ORS | Roller bearing{6308 series) " 89,991/89.998 5 20 100 " 0.001
outer ring diameter
TAR6Y.ORS Roller bearing(6002 series) " 13,233/13,245 5 20 100 Dial Gage 0.00!
inner ring rollway diameter
TAR2E.ORS | Roller bearing (6307 series) " 20.920/20,980 5 20 100 | Micrometer { 0.001
outer ring width
TOR4C.ORS | Roller bearing (6202 series) turning 29,00/29,10 5 18 87° " 0.01
outer ring inner diameter
TOREN.ORS Roller bearing {6202 series) " 11,50/11,75 N 16 80 " 0.01
outer ring width
TAEKB.TS UAZ engine exhaust valve length grinding 116,978/117.000 3 10 30 " 0.001
TAEMO.TS UAZ engine inlet valve seat length " 4,07/4,57 3 11 32° " 0.01
TAEKM.TS UAZ engine exhaust valve " 8,921/8,930 3 1 33 " 0.001
cam side diameter
DESAI.ASE | Selenoid valve center axis " 0,115/0,135(+) 5 14 70 ” 0.001
hole center
DESA2.ASE | Selenoid valve center axis distance " 0,115/0,135(+) 5 28 140 " 0.001
DESA3.ASE | Selenoid valve center axis distance " 0,415/0,435(+) 5 14 70 " 0.001
GKTIC.MKE | Galvanized wire diameter coating 1,93/2,07 5 24 120 " 0.01
GKT2C.MKE | Galvanized wire diameter " 2,43/2,57 5 19 95 " 0.01
TAEMM.HE Electric motor rotor diameter grinding 0,22/0,24 - - 72 " 0.001
TOSBB.MAN | Valve ring diameter{+) turning A:1,000/1,002 - - 300 " 0.005
B:1,065/1.070
DIYPBMAN | Oil pump vane clearence(+) drilling | A:0,3775/0.3825 - - 240 " 0.005
B:0,3675/0,3725

{*) insufficient number of measurements

Since the Weibull, Erlang and unit beta
distributions start from zero (0) and unit beta
function outside the interval (0, 1) gives prob-

ability density zero, all the collected
measurements are normalized by using the
formula

z=(x:—a)/(b—a) (1)

where the a and the b are the smallest and the
largest measurements, i.e. lower and upper limits
of the distribution, respectively. The xi is the
measured dimension variable and zi is the nor-

malized value of xi (unit dimension). After nor-
malization, the measured variables are distributed
between the values 0 and 1. For normalized
Weibull and Erlang distributions, the model
parameter estimators give more accurate results
than non-normalized variables. Unit dimensions
and their distributions can be used successfully in
and uniform
distribution functions since the frequency and

normal, log~normal, triangular
shape characteristics of the distributions are not
affected by normalisation. In this study, Eq. (1) is

used for normalising the collected data sets. The
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Fig. 1 The distribution functions used in the study

first letter "Z’ in the code of the data set of Table
3 is used to differentiate the normalised data sets
from the non-normalised data sets.

2.1.3 Validity test of proposed distribution
functions

In order to asses the applicability of the
proposed models to describe the behaviour of
frequency distributions of dimensions, statistical
test is necessary to see if proposed probability
distributions with estimated parameters actually
fits the measured data sets. There are various
statistical tests to check the goodness of fit. One of
the commonly used tests in statistics is the Chi~
square (x?) goodness of fit test and it was also
used in this study. The summary of the procedure
applied in this study is given below.

i)} The sample data x*, here the set of
dimensions, is grouped into a proper number of
equal width intervals or cells (1) varying between
S and 30. There must be at least five
measurements in each cell. For the manufacturing
applications, Ishikawa (1976) suggests that the
test give reliable results for 5-7 intervals if the
measurements are less than 50. He recommends 6~
10 intervals for 50-100 measurements, 7-12
intervals for 100-250 measurements and 10-20
intervals for measurements above 250 for the Chi-
square test.

ii}) From the available family of statistical
distributions (in this study, normal, log-normal,
triangular, uniform, Weibull, Erlang and beta
probability density functions), a model distribut-
ion function Fo(x) is hypothesised to represent
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and fit the sample data

iii) The parameters of the hypothesised model,
Fo(x), are estimated from the data by using esti-
mation techniques.

iv) The following statistic is calculated from
the observed and expected model frequencies.

1 _)?
=3 (0=B) -
where O; is the number of observed data in cell i,
E. is the number of expected data in cell i and 1
is the number of cells. Values of Ei are calculated
by using the postulated distribution function, F,
(x). It is known from the probability theory that
the statistic x? is distributed as a Chi-square
variable with y=1—/k—1 degrees of freedom.
Here k is the number of model parameters, v is
the degrees of freedom of the x? distribution. The
k value for triangular distribution is three, and for
the other distribution functions used in this study,
is two.

v) The terms of the x® statistic above measure
the discrepancy between the observed and
postulated theoretical class frequencies. Smaller
2% values indicate better fit of the distribution.
From the standard x* tables, the level of signifi-
cance {@) can be found by using x* value and
degrees of freedom (v). For a given significance
level @ and degrees of freedom ¢, the critical value
(x%c) is obtained theoretical  chi-
square tables. The postulated model Fy(x) and
the sample data give rise to single value (¥%) of
the test statistic. If x%:> ¥, the hypothesis that F,
(x) is the underlying measurement is accepted;
otherwise it is rejected. If two different
hypothesised models are tested for the same
experimental data, the model which gives the
smaller chi-square value or bigger level of signif-
icance, for the same degree of freedom, indicates
the better fit.

In this study, for the same set of dimensions, chi-
square test is applied to normal, log-normal,

from

triangular, uniform, Weibull, Erlang and unit
beta distribution functions, and x? values and
level of significances are found for the same
degrees of freedom. The STATGRAF software
package (Cooke, 1979) is used for the x* test of

the models.

2.2 Results and discussion

In the study, normal, log-normal, uniform, tri-
angle and Weibull models are tested for the 23
sets of data given in Table 1. The Erlang and beta
models are only tested for TOISD. HMA set,
which has variables between 0 and 1. Although
DESAIL. ASE, DESA2. ASE, DESA3. ASE,
TAEMM. HE, TDSBB. MAN and DIYPB. MAN
sets have variables in between 0 and 1, the
of beta and Erlang
distributions were not computable due to the very
close values of the distribution variables. The chi-
square test parameters and results (1, k, v, % a)
for sample hypothesised models are given in Ta-
ble 2 for the 23 sets of dimensions. In the last
column of the Table 1, the result of the x® test is
summarized by giving the first letter of the names
of the models in the order of increasing values of
x% or decreasing level of significance. For
TAMIF. HMA set in Table 2, the N, L, U, T+
listing is given which indicates that the model
which gives the minimum x* value is ‘normal’
(shortly N) and triangular (shortly T) is in the
4th position. The “*’ sign placed as a superscript
on the letter is the indication of significance level
less than 0.05 for the model. The best 4
distribution functions given in Table 2 are plotted
on the distributions of the measurement sets..
Sample plots are given in Fig. 2. The figure
indicates clearly that it is impossible to decide the
best-fit model by visual inspection. This verifies
the strong need for the chi-square test.

parameter  estimates

The results obtained from the ch‘i‘square tests
for measurement sets (non-normalised) (Table
2) can be summarized as follows:

1) In 14 of the 23 measurement sets, the normal
model gives the best fit. For 7 of these 14 sets of
data, the level of significance is less than 0.05.

2) In the 15 measurement sets log-normal
model gives the same level of significance with
normal and in 5 sets log-normal gives better fit
(higher significance level) than normal model.
So, the log-normal model gives much better fit
than normal model when all the measurement sets
are considered.
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Fig. 2 Frequency distributions of sample measurement sets and the plot of the best three distribution functions
(N=Normal, L=Log-normal, T=Triangular, U-Uniform, W-Weibull, E=Erlang, B==Bata)

3) Uniform distribution function models 3 data
sets better than the other models. This model is
generally placed in the 3rd or 4th places after
normal and log-normal models.

4) Triangular distribution models only one
data set better than the other distribution
functions. In all the data sets, it is placed in the
3rd and 4th position. .

5) Weibuil model parameters (estimated) and
x° values are calculated only for 7 sets of
measurements. In these 7 sets, the model is in the
2nd place once and 4th place three times.

According to the above results, it is found that
the log~normal and normal distribution functions
model the measurement sets better than the other
distribution functions. In modelling, the log-nor-
mal distribution gives better results than normal
due to the advantage of modelling left-skewness
of the data sets. Uniform distribution could be
considered as the 3rd best model in modelling the
measurement sets.

In the above analysis Erlang, Weibull and beta

cannot be wused in
modelling due to the non-normalised data sets. In
the second part of the study, 23 data sets are
normalised according to Eq. (1). The chi-square
test results (1, k, v, x% @) for sample hypothesised
models are given in Table 3 for the 23 sets of
normalised dimension measurements. The best 4
distribution functions given in Table 3 are plotted
on the frequency distributions of the normalised
measurement sets. Sample plots showing the best
three distributions are given in Fig. 3. When
Tables 2 and 3 are analysed together, it can be
easily deduced that the goodness of fit of the
models (last column of the Table), except Erlang,
Weibull and beta distributions, are same. As an
example for the set, TAMIF. HMA the goodness
of fit list is in the order of N, L, U, T in Table 2.
In the normalised set, ZTAMIF. HMA the rela-
tive positions of N, U, T are not changed but a
new model (beta) is included in the list i.e. B, N,
U, T. Some small changes in the orders of models
in Tables 2 and 3 are due to the small variations in

distribution functions
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Fig. 3 Frequency distributions of normalized sample measurement sets and the plot of the best three distribut-

ion functions(N=Normal, L=Log-nomal, T=Triangular, U=Uniform, W=Weibull, E=Erlang, B=

Bata)

number of intervals (cells) of the frequency
distributions of the normalised and non-nor-
malised data sets.

The results obtained from the chi-square tests
for normalised measurement sets can be summa-
rized as follows:

1) For all the proposed models the significance
levels of ZFRTSD. HMA and ZTARGY. ORS
measurement sets are in the order of 1075—107%%,
Therefore, these two normalised data sets are
discarded from the analysis, which would possi-
bly give unreliable and misleading results.

2) In 16 of 21 normalised data sets, beta dis-
tribution function gives the best fit. In 5 of these
16 sets, the level of significance is less than 0.05.

3) In 3 of 21 normalised sets, normal distrib-
ution function gives the best fit. Normal distrib-
ution is the second model in the sets for which
beta is the best.

4)  Weibull distribution

and triangular

functions are best in only one normalised set. In
normalised sets of ZTAPDK. HMA and
ZDIYPB. MAN in which the triangular and
Weibull distributions are the best, respectively,
the second best fits are beta distribution functions.

5) Erlang model generally gives a poor fit for
the normalised data sets.

6) Although the Weibull model seems to pro-
duce a better fit than the Erlang, in 14 of 16
normalised data sets, the Weibull gives a poorer
fit than the beta and normal distributions.

7) Triangular and uniform models are general-
ly placed in the 3rd or 4th place after beta and
normal. Only in the ZTAPDK. HMA set does the
triangular distribution give the best fit.

8) After the careful visual inspection of the
normalised frequency distributions, it is observed
that the right- and left-skewness characteristics of
the dimension frequency distributions are best
represented by the beta distribution model.
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It is clear from the above given results and
observations that the beta distribution function
models the distribution of dimensions better than
normal and the other commonly used statistical
models. Since normalisation technique only
changes the scale of the non-normalised
distributions without changing the frequency and
shape characteristics, it could be stated that the
beta distribution function is the best model for
reflecting the behaviour of the measurement sets.
The model parameters ¢ and J control the
skewness, shape and scale of the model. Erlang
and Weibull distribution functions are also
known to be good in reflecting the right- or left-
skewness. However, their model parameter
estimators are found weak when compared with
beta, which will eventually result in a poor chi~-
square fit.

The beta model is also proposed by He (1991)
to model the dimension distributions. In his
work, only the beta model is used and the superi-
ority of the model with respect to the other
distribution functions is not emphasised. In his
work, only two data sets are used. One of the two
sets of data is used to explain the use of the
distribution for a small data set (16
measurements) and the other is taken from
Bennet’s (1964) study to explain the procedure
for a large data set.

3. The Adoption of Beta Model to
x~bar Control Charts

In this part of the paper, an attempt is made for
the adoption of beta model to x-bar control
charts.

3.1 Normal-distribution-based x-bar charts

16 sets of measurements (Table 1) are used in
the construction of x~bar control charts. In this
study, the x-bar charts conducted for the normal
data are based on sample size of five. Schilling
and Nelson (1976) showed that the Shewhart x~
bar chart for modelling means works well with a
sample size four or five. Authors of this work
believe that real motivation for improving the
control chart methods for skewed data occurs

when a small sample size is required, such as n=1.

The Upper and Lower Control Limits of the
charts are abbreviated as UCLs and LCLs. The
letter s in the abbreviations indicates 'standard’
(normal-distribution-based) control limits. Sam-
ple calculation of UCLs and LCLs for TAMIF.
HMA data set is given below.

UCLs=x+A,R=53.9814+0.577(0.008) = 53.986mm
LCLs=x—A,R=53.9814—0.577(0.008) =53.977mm

Here, x=53.9814mm is the average of 9 samples
(53.979, 53.980, 53.981, 53.982, 53.982, 53.983, 53.
980, 53.983 and 53.983 mm) with 5 measurements
in every sample. R (the maximum deviation of
measurements in a sample) values for the samples
are 0.007, 0.008, 0.010, 0.013, 0.012, 0.005, 0.004,
0.005, 0.004 mm and their mean value (R) is 0.
008 mm. A, chart constants are dependent on
sample size and can be found in statistical quality
control books in tabulated forms (Bain, 1978 ;
Bury, 1975). For sample size (n) of 5, Az value is
0.577. In this study, control limit calculations are
made by using the formula CLs=x%+ AsR for the
simplicity of the calculations. The control limit
values for standard (normal model based) proce-
dure is given in Table 4.

3.2 Beta-distribution-based x-bar charts

For most of the manufacturing companies, 3
defectives in 1000 parts’ is an acceptable limit
(type 1 error rate of 3/1000). With the normal
distribution this error rate is represented very
closely by +/—3¢ distance from the distribution
mean which gives symmetric tail probabilities of
about 0.0015 on each side. Due to the skewed
shape of the beta distribution, it is impossible to
find equal symmetric distances from the
distribution mean which would give the equal tail
probabilities mentioned above. Therefore, it is
almost impossible to find chart constants (A;, A,,
By, Bz etc. as in normal model) for the beta-model-
based control charts. No references are available
in the literature for adjusting control limits of a x-
bar chart for skewed data by using the beta
distribution and other distributions different from
the normal. Upper and lower control limits of the
beta model can be estimated by using the prob-
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ability limit method. That is, it can be estimated

by obtaining the percentiles of the beta distributi-

on. In this study, the following procedure is
applied to estimate upper and lower control limits
for the beta model (UCLb and LCLb):

1. Normalise all the measurements (variables) in
the data set.

2. Obtain the @ and [ values of the beta model by
using the STATGRAPH package (If a set of
measurements has the population mean g and
variance ¢%, the beta model parameters @ and 3
are estimated from equations A2 and A3 given
in the Appendix. ).

3. Obtain the critical values, which would give 0.
0015 and 0.9985 probabilities in the beta func-
tion. The critical value, which would give 0.
0015 probability is the ZLCLb. Similarly, the
critical value which would give 0.9985 is the
ZUCLDb. The obtained values are the nor-
malised control limits of the beta model and the
letter Z indicates that
calculated from normalised distributions (ie.

these values are

unit dimensions).

4. Use the following formulation to convert
ZUCLb and ZLCLb values to UCLb and
LCLb.

UCLb=ZUCLb(bb-ab) +ab (3)
LCLb=ZLCLb(bb-ab) +ab (4)

Here, ab and bb are the lower and upper limits
of the beta distribution population, and they are
taken as the minimum and the maximum
measurements (dimensions) in the set. It should
be known that the maximum of original sample
(especially for cases with a small original sample
size) is not the maximum for the whole popula-
tion. If the maximum and minimum used to nor-
malise a new sample, are taken from the data used
to generate the control limits, there is a possibility
that the new sample will have a data point outside
the maximum and minimum of the original sam-
ple.

The percent difference between upper control
limits of standard procedure (normal-model-
based) and beta distribution populations
(DUCLsb), and the percent difference between
lower control limits of standard procedure and

(DLCLsb) are
calculated by using the following equations:

DUCLsb={UCLb—UCLs). 106/UCLs (5)
DLCLsb={(LCLb—LCLs). [00/LCLs (6)

beta distribution population

To compare the range between UCL and LCL
values obtained both from beta model and stand-
based) procedure
(RCLRsb) the following equation is used:

RCLRsb=(UCLb—LCLb)/(UCLs—LCLs) (7)

The results obtained from Egs. (3) to (7) is
in Table 4 for the 16 sets of
measurements.

ard (normal distribution

summarised

3.3 Sample case

'For the ZTAMIF. HMA data set, the @ and £
values are found from the STATGRAPH package
as 1,445 and 1.472. For the 0.0015 and 0.9985
probabilities, the critical values are 0.0079 and 0.
9912 (ie. ZLCLb and ZUCLb). Equations (3)
and (4) are used to find UCLb and LCLb. From
Egs. (3) and (4);

UCLb=0.9912(53.988—53.975) +53.975=53.9878mm.
LCLb=0.0079(53.988 —53.975) 4-53.975=53.975 Imm.

The percent difference between UCL and LCL
values for beta and standard values are (Egs. (5)
and (6));

DUCLsb=(53.9878—53.986). 100/53.986=0.0033%
DLCLsb=(53.9751—53.977). 100/53.977=—0.0035%

Comparison of the range between beta model
control limits and standard procedure control
limits is performed by using Eq. (7):

RCLRsb={(53.9878 —53.9751)/ (53.986—53.977) =1.41

From numerical results obtained for TAMIF.
HMA measurement set, it is clear that the UCLb
is higher than the UCLs, and LCLb is lower than
LCLs. The range between UCLb and LCLb
values is 41% bigger than the range obtained from
standard (normal-model-based) procedure.

3.4 Results and discussion

The sample analysis given in Sec. 3.3 is repeat-
ed for 16 sets of measurements and summary of
the results is given in Table 4. Some sample x-bar
charts showing both standard (normal-model-
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Fig. 4 Some sample £ control charts for the selected measurement sets

based) and beta distribution control limits are

given in Fig. 4. The following results can be

deduced from Table 4:

1. For the twelve of the sixteen data sets, the
UCLb is higher than UCLs, and LCLb is
lower than LCLs.

2. The range between UCLb and LCLb values is
generally wider than that of UCLs and LCLs.
The ratio of the range of beta control limits to
the range of standard procedure (RCLRsb) is
between | and 2.

The DUCLSsb and DLCLsb values indicate that
the beta-model-based control limits are not sym-

metric with respect to x value. The control limits
of the standard procedure are closer to the x value
than that of beta model (narrower control zone).
From the above results it can be deduced that the
normal-model-control limits provides closer
control over sample means than that of beta
model. It is possible that some sample averages
(ie. x-bar values) which fall beyond the control
limits of the normal model will be considered
acceptable (safe) by the beta~model-based con-
trol limits. By using the proposed, one can esti-
mate the control limits of beta model to monitor
the ongoing process.
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4. Conclusions

In this study, experimental and theoretical
efforts are spent to model the behaviour of di-
mension distributions of machined workpieces. 23
sets of dimension distributions of different parts
are used in this study. In order to model the
behaviour of the collected data, 7 different statis-
tical distribution functions, namely, normal, log-
normal, triangular, uniform, Weibull, Erlang and
unit beta distributions, were used. The beta dis-
tribution is found the best statistical distribution
function in representing the frequency distrib-
utions of the measurement sets by using chi-
square goodness of fit tests.

In the second stage of the work, the upper and
lower control limits of the beta model are
estimated by obtaining the percentiles of the dis-
tribution. The tail probabilities of 0. 0015 and O.
9985 are used to find the critical values for beta
distribution function and these values are taken as
the upper and lower control limits of the control
charts by using type [ error rate of 3/1000. It is
found that mostly the UCL of the beta model is
higher than that of normal model and LCL of the
beta model is lower than that of the normal. So,
the normal-model-based UCL and LCL provide
closer control over sample means than that of beta
model. It can be inferred that the beta-based chart
would result in fewer alarms, but it is difficult to
know when it will detect true out-of-control
points.

Many quality control engineers believe that in
practice, normality is not too much of a problem
in the case of x-bar charts since the errors
associated with its use are relatively small. The
authors believe that the real contribution for
improving the control chart methods for skewed
data occurs when a small sample is required, such
as the case where n=1. Development of an ap-
proach for adjusting the control limits of a con-
trol chart for skewed data, which can be modelled
by using different models than normal, will be
another contribution in the field.
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and Spurrier,

Appendix

A.1 Unit beta distribution function
The distribution function of the unit beta
model is

f<x>={a>o, 8>0
0

(A1)

where @ and B are the model parameters. The

mean () and variance (¢®) of the model are
calculated from

p= af_ﬂ (A2)
— a-B
o* {a+B)Ha+A+1D (A3)

The model parameter estimators (@ and 3) for
data less than 21 and more than 21 are given in
the works of Cooke (1979) and Bjorke (1978).
The model parameters ¢ and £ control the
skewness and shape of the distribution. For dif-
ferent @ and S values, the shapes of the unit beta
functions are given in Fig. 1.



